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In implementing multifrequency PPM, a naturally arising question is: Let P be a fixed

number; among all integer valued processes X ;, X Py X PR

with E(1X , - X 1) <P,

which has the largest entropy? Earlier work by McEliece and Rodemich answered this
question, but there is no obvious way to use this process to implement a code for
multifrequency PPM. The present article describes an easy-to-implement process X;, X ,,

., with E”Xn+1 - Xn|2} <P, whose entropy is nearly as great as that of the

MecEliece-Rodemich process.

l. Introduction

McEliece and Rodemich, in a study of the feasibility of
using multifrequency PPM for optical communication (Ref. 1),
were led to consider the following problem. Among all
stationary random processes {..., X_ Xo’ X .} taking
values in the set {1, 2, ..., V} and subject to the constraint

E(Xx, - X,,, ) <P 1)

how large can the entropy be? McEliece and Rodemich
showed that the maximum entropy is achieved by a Markov
chain and gave an exact formula for the transition probabilities
of the maximizing chain (Ref. 1). In order to apply these
results to the original problem in optical communication,
however, it would be necessary to encode a given binary data
stream into a sequence of symbols from {1,2, ..., N} which
closely resembles a “typical sequence” from the optimal
Markov chain. Given the complex form of the solution given in
Ref. 1, such an encoding would very likely be difficult to
implement. In this article we shall examine some approxima-
tions to the solution given in Ref. 1 which are not far from
optimal (about 0.25 bit) and which suggest practical ways to
implement energy-efficient multicolor PPM.

Il. Approximations

In this section we attempt to motivate the construction to
be given in Section III, as follows. We consider a simplified
version of the problem mentioned in the Introduction, viz, we
enlarge the state space from {1,2, ..., N} to Z, the set of all
integers. For a given value of P this will increase the maximum
possible entropy, but if P << N? this increase will be small. In
any case our object in this section is to compare the entropy
vs. P relationship for three possible Markov chains on Z subject
to Eq. (1): the optimal Markov chain and two others. In
Section IIl we will modify one of the suboptimal chains
discussed here to devise a practical modulation scheme for
multicolor optical communication, whose performance is (in a
sense to be given below) within 0.25 bits of the theoretical
optimum.

With the state set Z, the maximum entropy Markov chain
subject to Eq. (1) is a Markov chain for which the increments

A =X

n n+1

- X, @

are independent and identically distributed. The entropy of
the resulting chain is just the entropy of the random variable
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4, and 50 to solve the original problem on Z we just need to
maximize H(4) subject to the condition £(A2) <P. This can
be done using straightforward variational techniques (Ref. 2,
Problem 1.8), and the maximum entropy is given parame-
trically as follows:

For each A > 0, define

my = 3 e ®)
so that
-m'(\) = Z n? e nA (4)

Then among all random variables satisfying £(A%) <P, the
maximum entropy, Hmax, is given by

He . = logm®) - M'\)/m() (%)

ma

where

__mQ :
P = _m_O\)l (6)

For small values of A the sums in Eqgs. (3) and (4) are well
approximated by the following integrals:

m\) ~ f &N gy = NP (7)

-771'(7\)_ g f

2
x2e " Mgy = %\ VTN (8)

Using these approximations in Egs. (5) and (6), we obtain the
approximation

H = % logP+-;~ log 27e, P Large )]
which is extremely good even for small values of P, as
exhibited in Table 1. In Table 1 we have tabulated, for a range
of N’s, the corresponding value of P calculated from Eq. (6),
the exact value of H_ . calculated from Eq. (5), and the
approximate value of H . from Eq. (9). We conclude that
for P2 1, there is no significant difference between the exact
value of H . given by Eq.(5) and the approximation given
by Eq. (9).

58

The optimal distribution A, is unfortunately not well
suited for adaptation to a practical modulation scheme. The
exact distribution is in fact

Pri{A=k} = e Nm()) (10)

a nonuniform distribution on a countable set {0, 1, £2, ...}
of values. However, we can get a surprisingly large entropy by
considering instead of Eq. (10) a much simpler random
variable A(L), which is uniformly distributed on {~L, -L + 1,
oL L-1k

Pr{AW) = K} = 515 if -L <K <L -1
11
= 0 otherwise (1
For the sequence {..., X_,, X,,, X,, ...}whose increments

X,4q — X, are ii.d. with common distribution A®) | a simple
calculation gives

P=EX, -X)

= E(A(L)z)

L

= =5 + < (12)
H = log(2L) (13)

Thus for this particular Markov chain, the relationship
between the entropy H and the “power” P is

" 1 1 L
H = > log P + 2 log 12 + 5 log (1 6P) (14)

Comparing Egs. (9) and (14), we see that the difference in
entropy between the optimal distribution of increments (Eq.
10) and the suboptimal distribution (Eq. 11) is approximately
1/2 log me/6 = 0.255 bits.

As a comparison, we consider the Markov chain {. . . s X_ s
Xo. Xy ...} in which the components X, are i.i.d., uniformly
distributed on {1,2, ..., L}. In this case it is easy to calculate
[cf. Egs. (12) and (13)],

_ L%
P=t - (15)
H =logl (16)



from which follows

logP+= log6+ —= +0(P2)  (17)

H = 5

1
2 12P
Comparing Egs. (17) and (14), we see that for a given value of
P, a Markov chain with uniform and independent increments
gives one-half bit more entropy than one whose components
are independent and uniform. For a fixed value of H, the
distribution (Eq. 11) requires about 1.53 dB more power than
the optimal distribution, whereas a uniform distribution on
the X’s requires 4.53 dB more power.

Motivated by these results, in the next section we introduce
an encoding process which maps a sequence of 0’s and 1’s into
a sequence of elements from {-L, -L + 1, L - 1} that
closely resembles a typical sequence from Markov chain whose
increments are described by Eq. (11).

Il. An Encoding Algorithm

Motivated by the results of Section II, we propose a
method of encoding a random stream of O’s and 1’s, say U,
U,, U,, ... into a sequence X, X,, ... of elements from the
set {-N/2,-N/2+1,...,0,1,...,N/2~ 1}, such that Eq. (1)
is satisfied.!

First choose L to be the largest integer such that

L? 1
S h 2 <P (18)

and H to be the largest integer such that

-1 (19)

In our encoding algorithm the symbol X, ., will be deter-
mined by X, and the (m + 1)-st block of # data bits, viz
Whm+1s -+ » Ugm+1y}- These H bits are in fact used to
determine an mteger Am+11n the range [-27-1, 2#-1 - 1]
via two’s complement arithmetic. For example,

H
= Z u, 2k -u oA (20)

k=1

1eor notational convenience, in this section we assume V is even, and
let the state set be as described, instead of {1,2,... JNY.

The random variables A; A,, ... are ii.d.,, each being
uniformly distributed between ~27-1 and 2¥-1 - 1. Hence if
we define the Markov chain {X),,},, 5, by

X, =0
, , (21)
Xm+1 = Xm +Am+1

it follows from the results of Section II that the resulting
Markov chain has {cf. Eq. (12)]

2
N il
E(IXm Xm+ll ) = 3 +‘g
1.2
<= 4+ —
3 + 6 <P 22)

by Egs. (18) and (19). The entropy of {X } is H bits. Thus
from SectionIl, if P is large, the difference between the
entropy of this chain and that of the optimal Markov chain is
only about 0.255 bits.

However the chain {X } is not satisfactory, since there is
no guarantee that X w111 lie between -N/2 and N/2- 1. The
following definition remedles the situation.

X, =0
X1 = min(Xm,B)+Am+1 ime>O
(23)
=max(Xm,—B—l)—Am+l ifx, <0
where
B =%’—2H‘1 (24)

The number B defined in Eq (24) is the largest value forX
that guarantees Xm+1 < N/2- 1. Similarly -B-1 is the
smallest value for X that guarantees Xpeqr = “N/2. It
follows that the chain {X } defined by Eq. (23) will lie in the
desired range -N/2 < X, < N/2. The entropy of {X,,}is still
Hbits since H(X ., IX,, ) H for all m. The value ofE(IX
Xy 1) will be somewhat larger than the corresponding
value for {Xm}, since when X,, > B or X,, <-B-1 the
difference X,, ., -X,, will no longer be uniformly distributed
on {-2H-1, , 2H-1 - 1}. However, since £ (4,,) =- 1/2
the rule [Eq. (23)] causes the chain to be attracted to 0, and
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unlikely to lie near the boundaries. In the Appendix we make
this precise and show that in fact

22 I
E(X,. - X, <5 +F) +2 (25)

+1

where 7 is the unique solution in (0,1) to the equation

S H-1
¢ = 2" (26)
k=-2"141
Table 2 gives the value of these roots for H=1,2,...,7. It

follows that for a fixed P, if N is sufficiently large, Eq. (1) will
be satisified by the Markov chain {X,, }.

We conclude with a simple numerical example.

Example: Let N = 64, P = 23. From Egs. (18), (19), (24)
we have L =8, H =4, B=24. The data sequence u = (1000
0110 0111 0110 1100 ...) yields the increment sequence A
=-8, A, =6,A; =7,A,=6,A, =-4,and so by Eq. (23) we
have X, =0and (X,, X,,...)=(-8,-14,~21,-27,-21, .. )
The entropy of this chain is / = 4 bits, and from Eq. (25) and
Table 2

64 1
E(X, . - X %) <3« +(0.953817)%%) + < = 28.36

In fact, an exact calculation of the steady state probabilities
for this chain shows that P = 22.6. As comparison, we note
that Eq. (9) shows that the largest possible entropy for a
Markov chain with P = 22.6 is 4.3 bits. The performance of
our algorithm in this example is very close to the 0.255 bit loss
predicted in Section II.

References

1. McEliece, Robert J., and Rodemich, Eugene, “A Maximum Entropy Markov Chain,”
Proc. 17th Annual Conference on Information Sciences and Systems, Johns Hopkins
University, Baltimore, MD (1983), pp. 245-248.

2. McEliece, Robert J., The Theory of Information and Coding, Encyclopedia of
Mathematics and Its Applications, Addison-Wesley Publishing Company, 1977.

3. Kleinrock, Leonard, Queuing Systems, Volume 2: Computer Applications, John Wiley

and Sons, Inc., 1976.

60



Table 1. Comparison of H,,,, to its approximation

A P Hmax (exact) Hmax [from Eq. (9)]
1.00 0.499 1.0715 1.0713
0.95 0.526 1.0974 1.0974
0.90 0.5551 1.1247 1.1247
0.85 0.5880 1.1534 1.1534
0.80 0.6249 1.1838 1.1838

Table 2. Roots of Eq. (26)

H r

2 0.414214
3 0.823408
4 0.953817
S 0.988325
6 0.997073
7 0.999268
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Appendix

This appendix uses Kingman’s bound, below, to bound the
value of £(X,,,, - X,,)?, where X, X,, .. .is the process of
Section III. This is possible because Kingman’s bound gives a
maximum possible value to P(X,, =>R) for IQ[>B, while we
have o

22H-2
3

E((X,,,-X,)?| RI<B)= +1/6

Throughout this appendix, K will mean 27~!, and N isan "

even integer larger than 2K.

Lemma 1: Let ¥, ¥,, ... beiid. random variables, P(Y,
=) = 1/2K, - K<¢<K. Let W, =0, and let W,.q = max (0,
W,tY,.) Letr,0<r<1,bearoot of

K

E z/ - 2K

j=-K+1

Then P(X,, > 9) <r*. Lemma 1 is a special case of Kingman’s
bound (Ref. 3, p. 44).

Lemma 2: Let Y., Y,, .. beasinlemma 1. Let T,=0
and B=N/2 - K, and define T}, T,, . .. by

T

a1 min(T ,B)+Y, ifT, =0

max(];,,—B—l)—Yn+1 ifr, <0

Let r, again, satisfy 0 <r <1 and
) K
_ J =
K E r=1
J=—K+1

Then for all #, and all £, we have P(T, =9 <r%
Proof: The statement is trivial for £ <0. For any sequence

Y, Yy, ..., T, < W, where W, is the process of lemma 1,
and so the statement is true for > 0.

Theotem: For the process Xl, X,, ... described in
Section III, the steady state probability 2 satisfies, for £ > B,
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W2-9), 5

P(X,, >0 <%

where 0 <r <1 and

I
27< Z r’ =1
j=—K+1

Proof: Given that X, =0, X, X,, .. . has exactly the same
distribution as 7'}, T,, ... in lemma 2. Thus P(X,, > B) <r5.

Separately, for B < Q@ <N/2,
oy = L o
P(X,., =9 =3¢ . > P(X, =)

So

P(X,, =B)>P (X, =B+1)>..

" 2 P(X, =N[2-1)
Therefore

P(X, >0)< (ﬂ/—i{——&)-'rB

Corollary: (X, , - Xm)2 <K?/3+1/6+(4K?/3)rB.

Proof: As shown in Section II,

-2
E(X,, - X, FB-1<x_ <B) =f§- +1/6
Therefore
E(X x p <K,
X1 = X)) <t
N2-1
+2 Z P(X_=9)
R=B
X EB(X,,,~ X)X =0



But B Ni2-1 Np2-1

Nf2-1 ¢=B i{=B-K
2 3 P, REWX, . -X )X =9
#o8 _QKrDEK-1) g
3



